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Abstract

Multimodal sentiment analysis (MSA) and
emotion recognition in conversation (ERC)
tasks aim to identify emotions and opinions
in natural language processing (NLP). In this
paper, we explore different approaches to MSA
and ERC, implementing uni-modal classifiers
and fusing multiple modalities. The models
are evaluated on the CMU-MOSI and CMU-
MOSEI datasets. Results show that deep learn-
ing models outperform the SVR-based base-
line, and multimodal fusion improves perfor-
mance. The addition of attention mechanisms
further enhances the models’ capabilities. The
adapted model achieves competitive results on
sentiment analysis and emotion detection tasks.
This study provides insights into the model ar-
chitecture and performance evaluation for MSA
and ERC.

1 Introduction

Multimodal sentiment analysis (MSA) and emo-
tion recognition in conversation (ERC), the sub-
fields of natural language processing (NLP), aim
to automatically identify and categorize emotions,
attitudes, and opinions conveyed in textual data.
Traditionally, sentiment analysis (SA) has primar-
ily relied on textual information to infer sentiments.
However, with the rise of social media, image shar-
ing and multimedia content, including visual and
acoustic modalities, have proven valuable in cap-
turing a more holistic understanding of sentiment.

MSA, an emerging research area, integrates mul-
tiple modalities such as text, images, audio, and
video to uncover human sentiment’s rich and nu-
anced aspects. By combining these diverse sources
of information, MSA techniques strive to achieve a
more accurate and comprehensive representation of
human emotions and opinions expressed on online
platforms.

In this project, we discover different approaches
to MSA and ERC. We implement uni-modal clas-

sifiers using statistic-based machine learning mod-
els and neural-based models. We also discover a
way to fuse different text, video, and audio modali-
ties to robust the classifier. We analyze the perfor-
mance of the current state-of-art model UniMSE
(Hu et al., 2022) and discover new strategies for
this task. Lastly, we perform an adaptation task on
MSA and ERC on a larger dataset.

2 Task description

2.1 Dataset

In order to construct sentiment classifiers utilizing
a fusion of different modalities, we have selected
two multimodal datasets that suit our tasks.

The CMU-MOSI dataset is a relatively small
collection comprising 2199 opinion video clips,
specifically curated for MSA task (Zadeh et al.,
2016). The dataset offers annotations of sentiment
ranging from -3 to 3.

Another dataset, CMU-MOSEI, stands as the
largest dataset available to date for MSA and ERC
(Bagher Zadeh et al., 2018). CMU-MOSEI encom-
passes over 23,500 sentence utterance videos spo-
ken by a diverse set of over 1000 YouTube speak-
ers. The sentence utterances are randomly sampled
from various topics and monologue videos. The
videos are transcribed and adequately punctuated,
and the dataset exhibits gender balance throughout.

2.2 Main Tasks

We first construct three uni-modal classifiers on
textual features to tackle the SA task. Then, we
leverage the fusion of three modalities, including
text, video, and audio, to enhance the models’ ro-
bustness.

As our baseline strategy, we develop a Sup-
port Vector Regression (SVR) model (Joachims,
2005) based on the textual data extracted from the
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CMU-MOSI dataset. In addition, we implement
two deep learning models for comparison: a fully-
connected neural network model (NN) (Rumel-
hart et al., 1986), and a Long Short-Term Mem-
ory model (LSTM) (Hochreiter and Schmidhuber,
1997), both trained on the textual features solely.
Furthermore, to achieve further enhancements, we
construct a multimodal classifier (Fusion) by in-
corporating features extracted from the text, video,
and audio modalities of the CMU-MOSI dataset.

2.3 Adaptation Tasks
After achieving the goals in the main task, we take
a significant stride by leveraging the larger dataset,
CMU-MOSEI, which is an enhanced version of
MOSI. Unlike MOSI, CMU-MOSEI provides an-
notations for both sentiment intensity and emotion
labels. To enhance our multimodal model, we in-
corporate attention layers (Vaswani et al., 2017),
enabling improved handling of the fusion of dif-
ferent modalities. We train this upgraded model
separately on CMU-MOSEI, addressing two dis-
tinct tasks: MSA and ERC.

Building upon the insights and analyses derived
from the previous multimodal model, the introduc-
tion of attention mechanisms in our new model may
facilitate a more effective combination of informa-
tion from the text, video, and audio modalities.

To evaluate our models’ performance, we com-
pare our models’ results against those of state-of-
the-art models that have demonstrated high per-
formance on the CMU-MOSEI dataset (Hu et al.,
2022). Through this comparison, we anticipate
gaining insights into the strengths and limitations of
our model architecture. Consequently, this analysis
will guide us in identifying potential improvements
in data preprocessing techniques, architecture de-
sign, and parameter tuning.

2.4 Evaluation Metrics
For the main tasks on MOSI and the adaptation
task on MOSEI, we follow the evaluation meth-
ods in previous works (Han et al., 2021; Hu et al.,
2022), using mean absolute error (MAE), Pear-
son correlation (Corr), seven-class classification
accuracy (ACC-7), binary classification accuracy
(ACC-2) and F1 score as performance evaluation
metrics. We will also analyze model limitations,
ethical risks, and future work of our study.

For the adaptation task, we calculate the accu-
racy of the model’s prediction on each of the six
labels. For the emotion annotation of MOSEI, one

data point can have multiple labels, but our models
can only predict the single-class result. Therefore,
we take a prediction as correct if the predicted label
is one of the gold labels.

3 System Overview

Our system consists of three primary components.
In the initial phase, we utilize CMU-Multimodal
SDK to load the datasets. As the datasets encom-
pass text, video, and acoustic feature data with
varying frequencies, we designate text as the pivot
modality and align the acoustic and visual features
accordingly. Moving forward, we partition the
datasets into train, development, and test sets us-
ing the default portion suggested by the SDK. The
second component encompasses baseline and mul-
timodal models that take vector-based representa-
tions as input and generate predictions as output.
Lastly, we assess the performance of the models
and visualize any errors encountered during the
evaluation process.

4 Approach

4.1 Uni-modal
We establish three baseline sentiment classifiers,
employing Support Vector Regression (SVR), Fully
Connected Neural Networks (NN), and LSTM net-
work, all trained on the text data from the CMU-
MOSI dataset.

To extract text feature vectors from the CMU-
MOSI dataset, we align them with the correspond-
ing labels. The dimensionality of the word em-
beddings is reduced from n × 300 to 1 × 300 by
taking the average. For Neural Networks, we lin-
early transform the output labels from the original
range of [-3, 3] to [0, 1] to enable the application
of the sigmoid function in the output layer. The
dataset is split into train (58%), test (10%), and
development (32%) subsets based on the GOLD
metrics provided by CMU-MOSI.

For the SVR model, we conduct hyperparameter
tuning on the development split, exploring various
kernel options such as ‘linear,’ ‘poly,’ ‘rbf,’ and
‘sigmoid,’ along with tuning the kernel coefficient
(gamma), epsilon, and squared l2 penalty (C) using
grid search. The coefficient of determination of
the predictions is then calculated on the test set.
Additionally, we employ grid search to tune hyper-
parameters such as batch size, number of epochs,
number of layers, layer size, and activation function
for the Feed-forward Neural Networks.



4.2 Multi-modal
We train a multimodal classifier called STM-Fusion
to capture a broader context of information beyond
the baseline uni-modal models.

In addition to extracting text feature vectors from
the CMU-MOSI dataset, we also extract visual
and acoustic feature vectors and align them with
the corresponding text data. The size of each text
feature vector is n × 300, where n represents the
length of the instance and varies within the dataset.
By utilizing the alignment function provided by
the CMU-Multimodal SDK, the dimensions of the
visual and acoustic feature vectors are transformed
to n × 47 and n × 74, respectively. We combine
these three types of feature vectors and split the
data into train, development, and test datasets.

The architecture of our fusion model is illus-
trated in Figure 1. After preparing the data, we
pass the text, visual, and acoustic features through
unified feature extractor layers. Subsequently, we
perform late modality fusion and feed the result-

ing representation into three LSTMs and two fully
connected layers.

Similar to the approach mentioned in section
4.1, we utilize the development set to fine-tune
hyperparameters, including batch size, hidden layer
size, dropout rate, weight decay, number of layers,
and epochs.

We trained another multimodal model using the
attention mechanism on the CMU-MOSEI dataset.
Like the fusion model, it aligns modalities and
passes them into three individual LSTM layers, as
illustrated in Figure 2. The critical differences be-
tween these two multimodal models are the source
of visual feature embeddings and the fusion pro-
cesses. The fusion model uses an n × 47 Emo-
tient FACET (iMotions, 2017) containing a set of
six basic facial emotions. In contrast, the atten-
tion model uses MultiComp OpenFace (Baltrusaitis
et al., 2016), which provides an n × 713 visual
feature representation with more visual semantic
information (e.g., facial landmarks, facial shape pa-

Figure 1: Overview of Fusion Model Architecture

Figure 2: Overview of Model Architecture with Attention Mechanism



rameters, head pose, etcetera). The attention model
introduces dot-product attention layers, rather than
simply concatenating the output of each modality
from the LSTM layers, to learn the attention scores
of each modality.

Five dot-product attention layers are applied to
fuse the outputs from three modalities. The first
two attention layers take the output from the acous-
tic and textual output and the output from the vi-
sual and textual outputs, respectively. We used
textual output twice because we found that textual
data can convey more information to the MSA and
ERC tasks. The result of these two attention lay-
ers will be concatenated and input into three more
dot-product attention layers. Each layer takes the
output from each modality’s LSTM layer again and
produces attended acoustic, attended textual, and
attended visual features. Eventually, we concate-
nate these attended features into one representation
and process it with the same architecture in the
fusion model.

5 Results

We set the optimal parameters for each model by
grid searching. We choose the Radial Basis Func-
tion kernel for the SVR model, C of 200, epsilon
of 1, and automatic gamma value. For the fully-
connected neural networks, we set up two hidden
layers with sizes of 512 and 256, respectively, fol-
lowed by the ReLU activation function. The sig-
moid function is applied to the output layer. For
the LSTM model, we implement one LSTM layer
(with ReLU activation and dropout of 0.5), fol-
lowed by two fully connected layers (the former
uses ReLU, and the output one uses Sigmoid).

Table 2 shows the performance of each model on
the CMU-MOSI test set, compared with the current
state-of-art multimodal model, UniMSE (Hu et al.,

2022).
Deep learning models (i.e., fully-connected Neu-

ral Networks and the LSTM model) significantly
outperform the baseline SVR model in ACC-2 for
the uni-modal method. In contrast, the SVR model
gives better results on ACC-7. LSTM leads to
higher ACC-7 compared to SVR and NN.

Comparing the confusion matrix from the binary
classification results, the neural network model has
more true positive predictions than the SVR model.
In contrast, SVR has fewer false positive predicts
and has more correct predictions in negative senti-
ment, which indicates that, in distinguishing neg-
ative affect, the SVR model is still competitive
compared to the neural network model.

By comparing the training and validation loss
over epochs (Figure 3), it also shows that the LSTM
architecture significantly improves the over-fitting
issue that exists in the vanilla NN architecture,
which indicates that STM-LSTM is more robust to
generalizing unseen data.

Figure 3: Loss vs. Epochs of STM-NN and STM-LSTM

The multimodal model Fusion adds two other
modalities (i.e., video and audio). We expect the
results to outperform the uni-modal methods, as-
suming two extra feature resources could lead to
more accurate classification. The ACC-7 of the fu-
sion model beats the one from LSTM, whereas its
ACC-2 only slightly outperforms the SVR baseline.

Though there is still a gap between our results

Method Model MAE ↓ Corr ↑ ACC-7 ↑ ACC-2 ↑ F1 ↑
Uni-modal STM-SVR 1.60 0.39 20.52 70.74 72.88
Uni-modal STM-SVR* 0.70(0.67) 0.34(0.29) 40.1(42.5) 62.5(59.3) 77.4(75.7)

STM-NN 1.02 0.43 20.08 73.80 75.63
STM-LSTM 1.09 0.37 21.40 74.24 75.69

Multi-modal STM-Fusion 1.08 0.31 22.16 70.99 71.73
STM-Attention* 0.68(0.65) 0.35(0.32) 44.5(46.6) 62.8(60.1) 78.9(77.9)
UniMSE* 0.69 0.81 48.68 86.90 86.42

Table 1: Results on MSA. * denotes that the model is trained on MOSEI (the others are trained on MOSI). Contents
in parentheses denote the accuracy of the dev sets. Contents in italics denote the current SOTA model. Contents in
bold denote the best performance from our models.



and the SOTA model of UniMSE, this is already a
relatively good performance, given that our models
are trained on a smaller dataset.

The attention model trained on CMU-MOSEI
outperforms the STM-SVR baseline model across
multiple evaluation metrics, including F1 score,
R-squared, ACC-2, and ACC-7. Conversely, our
STM-Fusion model only surpasses the SVR base-
line model in ACC-2 and ACC-7 on the CMU-
MOSI dataset. The attention mechanism is partic-
ularly efficient in predicting the seven class senti-
ments (ACC-7 = 44.5).

In ERC, we employed the same attention-based
model architecture used in MSA. The dataset labels
consist of a vector size of 6, representing emotions
including happiness, sadness, anger, fear, disgust,
and surprise. Each vector element is annotated on
a scale of [0, 3], indicating the degree of presence
of that emotion. Our model prediction is accurate
if the predicted emotion has an annotation value
greater than 0. As shown in Table 2, the attention
model (ACC = 62.9) performs slightly better than
the SVR baseline model (ACC = 62.6). In addition,
we conduct experiments using single modalities,
including text, visual, and acoustic. As anticipated,
the attention model’s performance surpasses uni-
modal LSTM models.

Model Modality ACC
SVR Text 62.6 (63.1)
LSTM Text 61.8 (62.9)
LSTM Acoustic 62.7 (62.3)
LSTM Visual 62.8 (62.4)
Attention T+A+V 62.9 (63.4)

Table 2: Results on ERC. Contents in parentheses de-
note the accuracy of the dev sets.

6 Discussion

To briefly recapitulate the improvements we made
for our adaptation task, we added the attention
mechanism to our previous multimodal STM-
Fusion model to train a multimodal attention-based
model. Also, we trained our model on the more
extensive and diverse CMU-MOSEI dataset instead
of the CMU-MOSI dataset we used previously. Ad-
ditionally, since the CMU-MOSEI dataset also in-
cludes emotion labels as a y variable, our mul-
timodal attention-based model can be trained to
perform two tasks separately: MSA and ERC.

Concerning the MSA task, our multimodal

attention-based model outperforms our SVR base-
line on all metrics, including F1, MAE, ACC-2,
ACC-7, and R2. The attention-based model (ACC-
2 = 62.8) performs slightly better than the SVR
baseline (ACC-2 = 62.5) on binary classification,
whereas the improvement is more evident on seven-
class classification task (ACC-7Attention = 44.5,
ACC-7SV R = 40.1). The attention-based model
(F1 = 78.9) also outperforms the SVR baseline
(F1 = 77.4) on the F1 score.

It is important to emphasize that the SVR base-
line is trained on texts only, whereas the attention-
based model is trained on three modalities of data.
The performance improvement is likely since the
multimodal attention-based model leverages mul-
tiple sources of information, including text, audio,
and video. By incorporating diverse modalities,
the attention-based model can capture different as-
pects and perspectives of the data. This integration
of complementary information can lead to a more
comprehensive understanding of the underlying
patterns and structures in the data.

For the ERC, we trained one SVR baseline
on texts only, and we also trained three uni-
modal LSTM models on each of the three in-
dividual modalities. We trained our attention-
based model to perform ERC as well. The
multi-modal attention-based model outperforms
all other models, including SVRtext, LSTMtext,
LSTMaudio, and LSTMvideo. The attention-based
model has the highest accuracy score on the eval-
uation set (ACC=63.4) and also the development
set (ACC=62.9), which are slightly better than the
scores achieved by other models.

Given that the attention-based model performs
only slightly better than the SVR baseline and the
uni-modal LSTM models, it is very likely that
the three modalities only provide a limited extent
of complementary information but lack additional
complementary information, which explains why
the multimodal attention-based model does not
have a significant advantage over the uni-modal
ones.

Other problems limit the performance of our
models. The first problem is an imbalance in the
distribution of emotion labels across modalities,
which can limit the model’s ability to learn from
multiple modalities of information effectively. In
the CMU-MOSEI dataset, 62.3% of emotion la-
bels is "happy," 16.4% is "sad," 11.7% is "angry,"
and the rest is distributed among "disgust," "sur-



prise," and "fear." The main problem with having
an imbalanced dataset is that models trained on im-
balanced datasets tend to favor the majority class,
as the model saw most examples from the majority
class. Thus, the model struggles to make predic-
tions of minority classes, which leads to biased
model predictions and poor generalization.

Our model’s predictions of emotion reflect this
problem. Our attention-based model could cor-
rectly predict the majority class ("happy") for
94.3% of the time. For the second most frequent
class ("sad"), the model only made 26.4% correct
predictions. For the third most frequent class ("an-
gry"), the model made a brutal 0.8% of correct
predictions. The model never generated any predic-
tions for the remaining minority classes ("disgust,"
"surprise," and "fear"). These results illustrate how
our model struggles with minority class predictions
due to the imbalance in the dataset.

To mitigate this problem, we tried to sample
from the dataset (e.g., include fewer samples of
"happy") to create a more balanced, uniformly
distributed dataset. However, this could have im-
proved the model’s performance. Eventually, we
decided to stick to the entire dataset.

Besides the limitations discussed above, our
adaptation task has had many successes. To begin
with, we re-implemented our multimodal model
using TensorFlow (instead of PyTorch), which pro-
vides a better API to implement the attention mech-
anism. Additionally, to mitigate the problem of
limited computing resources and extensive train-
ing data, we first experimented on 10% of the
dataset. Then we trained the entire dataset, which
proved helpful, as training complicated models on
large datasets can be computationally expensive
and time-consuming. By starting with 10% of the
data, we quickly prototyped and experimented with
different models or techniques without requiring
extensive computational resources.

Most importantly, we designed an optimized
training approach to train more than 30GiB of
embeddings. We tuned parameters like the number
of epochs and batch size to find numbers that bal-
ance model performance and computing resources
required. Finally, we overcame the bottleneck prob-
lem we encountered in the main task by integrating
the attention mechanism, which led to improve-
ments in model performance, as our adaptation
model outperforms the baseline model in all as-
pects. In contrast, our main task model only out-

performs the baseline model on several metrics.

7 Limitations and ethical considerations

Despite designing several model architectures and
gradually improving our results, our project has
two main limitations:

• We encountered challenges in balancing the
label distribution for ERC, significantly im-
pacting our predictions’ accuracy. Dealing
with imbalanced datasets is a common issue in
machine learning, and we recognize the need
to enhance our knowledge and experience in
addressing this problem effectively.

• Effectively combining and leveraging infor-
mation from multiple modalities remains a
significant challenge in multimodal machine
learning models. Although our attention
model showed better performance in address-
ing this issue than the previous fusion model,
there is still ample room for improvement.

Furthermore, it is crucial to prioritize ethical
considerations in machine learning projects to en-
sure fairness, transparency, and responsible deploy-
ment. Considering energy consumption during
model training is essential for promoting sustain-
able and environmentally conscious practices. Ad-
ditionally, conducting a thorough scrutiny of the
dataset being used is essential. Despite being pop-
ular datasets in the MSA field, we discovered that
MOSI and MOSEI need more detailed data state-
ments (Bender and Friedman, 2018) that describe
the demographic and situational information of the
speakers. It is highly recommended to critically
examine the datasets’ limitations in future works.
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